cadmicro solidworks

SOLIDWORKS SIMULATION ESSENTIALS

PREREQUISITES	LENGTH	DESCRIPTION
 Knowledge of SolidWorks and basic mechanical engineering concepts is required. 	3 Days	This course will provide an in-depth coverage on the basics of Finite Element Analysis (FEA). covering the entire analysis process from meshing to evaluation of results for parts and assemblies.

▶ INTRODUCTION TO FEA

- What is SolidWorks simulation, Finite Element Analysis?
- Build Mathematical, Finite Element Mode
- Solve Finite Element Mode
- Degrees of Freedom, Units of Measurement
- Calculations, Interpretation, Errors in FEA
- Limitations of SolidWorks Simulation

► THE ANALYSIS PROCESS

- Stress in a Plate
- SolidWorks Simulation Options
- Pre-processing, Meshing, Post-processing
- Multiple Studies
- Reports

► MESH CONTROLS, STRESS CONCENTRATIONS & BOUNDARY CONDITIONS

- The L Bracket
- Analysis of Bracket with a Fillet
- Analysis of a Welded Bracket
- Understanding the Effect of Boundary Conditions

► ASSEMBLY ANALYSIS WITH CONTACTS

- Contact Analysis
- Pliers with Local, Global Contact

► SYMMETRICAL & FREE SELF-EQUILIBERATED ASSEMBLIES

- Shrink Fit Parts
- Analysis with Soft Springs

▶ ASSEMBLY ANALYSIS WITH CONNECTORS

- Connecting Components
- Case Study: Vise Grip Pliers

▶ COMPATIBLE/INCOMPATIBLE MESHES

- Compatible/Incompatible Meshing
- Case Study: Rotor

▶ ASSEMBLY ANALYSIS MESH REFINEMENT

- Mesh Control in an Assembly
- Cardan Joint
- Draft Quality Coarse Mesh Analysis, High Quality Mesh Analysis

► ANALYSIS OF THIN COMPONENTS

- Mesh with Solid Elements, Refined Solid Mesh
- Solid vs. Shell
- Creating Shell Elements
- Shell Elements Mid-Plane surface
- Results Comparison
- Case Study: Joist Hanger, Pulley

cadmicro solidworks

SOLIDWORKS SIMULATION ESSENTIALS

► MIXED MESHING SHELLS & SOLIDS

- Mixed Meshing Solids and Shells
- Case Study: Pressure Vessel

► MIXED MESHING SOLIDS, BEAMS & SHELLS

- Mixed Meshing
- Case Study: Particle Separator

▶ DESIGN SCENARIOS

- Suspension Design
- Multiple Load Cases
- Geometry Modification

► THERMAL STRESS ANALYSIS

- Bimetallic Strip
- Examining Results in Local Coordinate Systems
- Saving Model in its Deformed Shape

▶ ADAPTIVE MESHING

- Support Bracket
- h-Adaptivity, p-Adaptivity Study
- h vs. p Elements Summary

► LARGE DISPLACEMENT ANALYSIS

- Small vs. Large Displacement Analysis
- Small Displacement Linear Analysis
- Large Displacement Nonlinear Analysis
- Case Study: Clamp

► MESHING, SOLVERS TIPS & TRICKS

- Meshing Strategies
- Geometry Preparation
- Mesh Quality, Controls
- Meshing Stages
- Failure Diagnostics
- Tips for Using Shell Elements
- Hardware Considerations in Meshing
- Solvers in SolidWorks Simulation
- Choosing a Solver